

Saint Martin’s Catholic Academy

Computer Science - Year 7 Long Term Plan

Time allocation 1 lesson per week
Unit 2 – Programming using Small Basic

Key learning in this unit:

Students learn that computers are binary devices, controlled by switches called transistors. They briefly study the history of computing to understand how and
why we have arrived at this point and why binary devices are more reliable than those which might try to represent decimal quantities electronically.
The programming language “Microsoft Small Basic” is then used to introduce students to a text based, object-oriented style programming language where they
gain familiarity with the core building blocks of any program – variables, input/output, iteration and decision making. Small Basic is an ideal first programming
language as it has only 13 key words, yet is very powerful. The language prevents common misconceptions that arise when using more “visual” learning tools
such as Scratch which can quickly become disconnected from the actual skills necessary to produce code in the real world.

 Key learning, tasks and skills Opportunities for assessment Specific knowledge focus
Lesson 1 – Computers and
Algorithms

• Students learn the basic terminology
necessary to understand what a
computer is and how it might be
controlled using a programming
language – binary, transistor, input,
process, output, algorithm.

• Students learn to draw and interpret
flow charts to represent and
understand simple algorithms such
as creating a username, resetting a
password or deciding the outcome of
a game.

• Students learn the core concepts
behind input, output and variables in
a flow chart.

• Knowledge check – what is a
computer, basic algorithm facts.

• Tasks completed in lesson – flow
charts, written answers to tasks.

• A computer is a binary device – it
understands data in the form of the
numbers 1 and 0 only.

• Computers represent data, logic and
instructions using switches called
transistors. These may be on or off (1
or 0)

• Computers take input (data going IN
to a machine), process it according to
program instructions in order to
produce output (data coming OUT of
a machine)

• Programs/software are a list of
mathematical or logical instructions.

• Algorithms are specific sequences of
instructions which solve a particular
problem.

Lesson 2 - Variables • Through a process of programming
examples which build on each
previous example, students explore
the concept of adding variables to
their programs and observing the
effect of changing the value of
variables on each run of a program.

• Students learn the purpose and
advantages of variables.

• Students learn to create variables
which store both numeric and text
data

• Students learn to combine variables
and manipulate their contents using
operators such as + for both addition
and concatenation

• Knowledge Check – Key terms –
algorithms, input, process, output,
variable

• Program code produced, feedback
from errors and debugging process.

• Answers to written tasks

• Variables are based on the concept of
algebra – an identifier which
represents a value.

• Variables are an extension of algebra –
we may use clear, long names as
identifiers rather than single letters
that are commonly used in Maths.

• The contents of variables may
change, this is why a program which
uses them may produce different
output each time it is executed.

• Variables allow programs to be
changed quickly, by simply adjusting
the value of a variable in one place –
which will then cascade those
changes anywhere else it is used.

Lesson 3 – Input / Output • Students develop the concept of
using variables and concatenation to
explore taking and storing input to
produce meaningful and well
formatted output.

• Students develop their knowledge of
variables that store numeric data to
produce a number of programs which
apply various formulae to inputs in
order to provide useful output using
mathematical operators

• Knowledge Check – Variables
• Program code produced, feedback

from errors and debugging process.
• Answers to written tasks

• Input is the process of taking data
from the outside world (user, sensor,
data stream) and storing it in a
variable so we can use it in a program.

• Input allows programs and their
output to be tailored to the specific
requirements of a user.

• Output should be sensibly formatted
and concatenation is the key to this

• Concatenation allows us to insert the
contents of variables as a form of
“find and replace” or “fill in the
blanks” in output.

Lesson 4 - Loops • Students are introduced to the idea
that programs are repetitive in nature
and this leads to them being
significantly inefficient without the
use of loops. Loops build on their
previous learning involving variables
and, through examples, students
discover that variables can be used
not only to control a piece of code

• Knowledge Check – Input, output and
concatenation

• Program code produced, feedback
from errors and debugging process.

• Answers to written tasks

• A loop allows a block of code to be
repeated either a set number of times
or until the conditions of a rule are
met.

• There are two main types of loop –
Fixed (FOR) loops and condition
controlled (WHILE) loops.

being executed repeatedly, but also to
be used as useful output during this
process.

• Students create programs involving
fixed loops or “FOR… NEXT” loops
and, through a process of gradual
development, learn to use the loop
counter as an important variable in
their programs.

• Students finally learn about condition
controlled or “WHILE” loops and learn
to build a program which iterates an
unknown amount of times, based on
the input which the program receives
from the end user.

• FOR loops are used when you need to
repeat a section of code a specific
number of times.

• WHILE loops are used when you do
not know how often or long something
will need to happen for. For example,
people playing a game may have
vastly different skill levels – WHILE
loops allow for players to continue
UNTIL they lose the game.

Lesson 5 – Arrays • This lesson combines all prior
learning of input, output, variables
and loops to introduce the concept of
an array, which is effectively a table of
similar data stored in a program.

• Students learn, through a process of
gradual evolution, to create a program
which stores a collection of data
entered by the user.

• Students learn to iterate through an
array using a loop and the importance
of the loop counter in doing so. They
learn to systematically manipulate
each element in the array on each
iteration of a loop.

• Knowledge Check – Loops
• Program code produced, feedback

from errors and debugging process.
• Answers to written tasks

• An array is a collection of data, much
like a table

• Arrays are fixed size
• Arrays contain data all of the same

type – e.g. all text or all numeric.
• Arrays are indexed – each “row” has a

number which we use to refer to the
data stored there.

• Loops are essential prior learning as
you cannot sensibly use an array
without a loop to fill, search, edit or
otherwise manipulate that array

Lesson 6 – If’s • This lesson introduces the idea of
changing the flow of program
execution based on the outcome of a
particular rule.

• Students learn to create programs
which give different output based on a
rule applied to the contents of a
variable.

• Knowledge Check – Arrays
• Program code produced, feedback

from errors and debugging process.
• Answers to written tasks

• Programs often need to provide
different actions or outputs
depending on the outcome of a
condition.

• IF statements allow programs to
execute different blocks of code
according to the result of a
calculation

• Students learn how to extend their
programs to test for multiple
conditions and therefore provide
multiple possible outcomes using the
“else if” and catch-all “else”
statements.

• “ELSE” is the catch all clause which
allows programmers to specify what
happens if none of the previous
conditions are met.

• IF statements may have multiple tests
or conditions and multiple possible
outcomes. For example – a menu may
have 15 options, all of which need a
different section of code to
consequentially be executed.

Lesson 7 – Debugging • In their final lesson, students learn
about the methods for identifying and
systematically removing bugs from
their programs.

• Students are introduced to the two
main types of program error – syntax
and logic.

• Students learn to interpret and
understand common error messages
and how these can lead to the rapid
resolution of program errors.

• Knowledge Check – If’s
• Program code produced, feedback

from errors and debugging process.
• Answers to written tasks

• All software contains errors
• Syntax errors are often spelling

mistakes or misunderstandings of
how the grammar of a programming
language should be applied

• Syntax errors are simple to find and fix
as the program will refuse to run until
they are corrected

• Logic errors are mistakes a
programmer made in their thinking or
application of an algorithm

• They are much more difficult to find
and fix as programs will run, but will
give unexpected output.

